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Motivation: differential power analysis

Physical implementation of cryptosystems on devices such as smart
cards leaks information.
This information can be used in differential power analysis (DPA),
as was shown by Kocher in Crypto 99.
This kind of attack consists in monitoring the power consumption
of the physical device and gathering information on the value of
variables occurring in the computation.
These attacks can be devastating if proper counter-measures are
not included in the implementation.
This kind of attack belongs to the general context of side-channel
attacks .



Boolean masking

Boolean masking, a natural countermeasure, consists in a kind of
secret-sharing method changing the variable x say into randomized
shares

m1,m2, · · · ,md+1

called masks such that

x = m1 + m2 + · · ·+ md+1

where + is a group operation - in practice, the XOR.
Since the difficulty of performing an attack of order d (involving
d + 1 shares) increases exponentially with d , it was believed until
recently that for increasing the resistance to attacks, new masks
have to be added, thereby increasing the order of the
countermeasure.
This is both costly in terms of hardware and unsecure ( masks
refreshing operation)!



Leakage squeezing

Now, it is shown by Carlet (Paris 8) and Danger/ Guilley/Maghrebi
(ENST) that another option consists in encoding the masks, which
is much less costly in memory resources than adding fresh masks.
At the order one , this consists in representing x by the ordered
pair (F (m), x + m), where F is a a special type of (bijective)
vectorial Boolean function called Graph Correlation Immune by
Carlet, because (x ,F (x)) is called the graph of the function F .



Graph Correlation Immune Boolean functions

Wanted: Boolean S-boxes - that is,
permutations F : Fn

2 → Fn
2,

such that, given some integer d as large as possible,
for every pair of vectors a, b ∈ Fn

2 such that (a, b) is nonzero and
has Hamming weight < d , the value of the Walsh transform of F
at (a, b) is null.

F̂ (a, b) =
∑
x∈Fn

2

(−1)b·F (x)+a·x = 0

We call such functions d-GCI, for Graph Correlation Immune.
Question: Can Coding Theory help to construct such functions?



Systematic Codes

An (unrestricted) binary code C of length N is just a set of vectors
of FN

2 .
It is systematic if there exists I ⊆ [n] such that the projection of C
on I is one to one and the image of C is 2I .
The set I is then said to be an Information set for C .
The generator matrix of a linear [2n, n] code is said to be in
systematic form if it is blocked as (I ,A) with I the identity matrix
of order n. If A is circulant then C is said to be double circulant.



Self dual Codes

If C is a linear code, its dual C⊥ is understood w.r.t. the standard
inner product. The code C is self dual if C = C⊥. The Hamming
weight w(z) of a binary vector z is the number of its nonzero
entries. The weight enumerator WC (x , y) of a code C is the
homogeneous polynomial defined by

WC (x , y) =
∑
c∈C

xn−w(c)yw(c).

The code C is formally self dual or FSD for short, if its weight
enumerator is invariant under the MacWilliams transform, that is

WC (x , y) = WC (
x + y√

2
,

x − y√
2

).



Complementary Information Set Codes

A binary linear code of length 2n and dimension n is said to be
Complementary Information Set (CIS for short) with a partition
L, R if there is an information set L whose complement R is also
an information set.
Call the partition [1..n], [n + 1..2n] the systematic partition.
Since the complement of an information set of a linear code is an
information set for its dual code, it is clear that systematic
self-dual codes are CIS with the systematic partition.
It is also clear that the dual of a CIS code is CIS.
Hence CIS codes are a natural generalization of self-dual codes.



CIS codes and CGI functions

We attach to a vectorial function F : Fn
2 → Fn

2 the code CF of
length 2n defined as

CF = {(x ,F (x))| x ∈ Fn
2}.

Note that CF is CIS iff F is a permutation.
If F is linear then the generator matrix of CF is of the form (I ,A)
with A non singular.

Theorem
The permutation F : Fn

2 → Fn
2 is a d-GCI function of n variables iff

the code CF has dual distance ≥ d .



Delsarte’s dual distance
If C is a binary code, let Bi denote its distance distribution, that is,

Bi =
1

|C |
|{(x , y) ∈ C × C | d(x , y) = i}|

The dual distance distribution B⊥i is the MacWilliams transform of
the distance distribution, in the sense that

D⊥C (x , y) =
1

|C |
DC (x + y , x − y),

where

DC (x , y) =
n∑

i=0

Bix
n−iy i ,

and

D⊥C (x , y) =
n∑

i=0

B⊥i xn−iy i .

The dual distance of C is the smallest i > 0 such that B⊥i 6= 0.
When C is linear, it is the minimum distance of C⊥, since
D⊥C (x , y) = DC⊥(x , y).



Sketch of proof

The proof follows immediately by the characterization of the dual
distance of a code C in terms of characters χu(C )

χu(C ) =
∑
v∈C

(−1)u.v

of C regarded as an element in the group algebra Q[F2].
Essentially, this characterization says that d⊥ if the smallest non
zero weight of a u ∈ Fn

2 such that χu(C ) 6= 0.
Note that the value of the Walsh transform of F at (a, b) is
χu(C ) for u = (a, b) and C = CF .



Background on Z4-codes

A Z4-code of length n is a Z4-submodule of Zn
4.

Recall that the Gray map φ from Z4 to F2
2 is defined by

φ(0) = 00, φ(1) = 10, φ(3) = 01, φ(2) = 11.

This (nonlinear!) map is extended component wise from Zn
4 to F2n

2 .
The Gray image φ(C ) of a Z4-code C is just {φ(c)| c ∈ C}.
The Lee distance dL of C is the Hamming distance of φ(C ).
In general a Z4-code C is of type 4k2l if C ≈ Zk

4Zl
2 as additive

groups.
A Z4-code is called free if l = 0.



Background on Z4-codes II

An important class of Z4-codes is that of QR(p + 1) where QR
stands for Quadratic Residue codes and p is a prime congruent
to ±1 modulo 8. They were introduced as extended cyclic codes,
based on Hensel lifting of classical binary quadratic residue codes.
Recall that if n ≡ ±1 (mod 8), these are cyclic codes of length n
and generator g with xn + 1 = (x + 1)g(x)h(x) and

g(x) =
∏
i=�

(x − αi ),

with αn = 1.
Example: x7 + 1 = (x + 1)(x3 + x + 1)(x3 + x2 + 1)
lifts into
x7 − 1 = (x − 1)(x3 + 2x2 + x − 1)(x3 − x2 + 2x − 1).



Non linear CIS codes from Z4−codes

Define a free Z4-code of length 2n with 2n codewords to be CIS if
it contains two disjoint information sets.

Theorem
If C is a free systematic Z4-code of length 2n with 2n codewords,
then its binary image is a systematic code of the form CF for some
F . Furthermore, C is CIS with systematic partition if and only if F
is one-to-one.



Old Examples I:

Example

Consider the Nordstrom Robinson code in length 16, a systematic
code of distance 6 with 256 codewords
twice as many as the best linear code with that length and
distance.
It is the Gray image of the octacode , which is free and CIS as self
dual.
It therefore can be attached to a 6-GCI function in 8 variables,
when the best linear CIS code only gives a 5-GCI function.



Old Examples II:

The octacode is the Hensel lift of the binary QR(7). For larger
primes we have

Example

Consider QR24 a self-dual extended cyclic Z4-code. Its binary
image of length 48 has distance 12, which is as good as the best
[48, 24] binary self-dual code ( also a QR code!).
Consider QR32 a self-dual extended cyclic Z4-code. Its binary
image of length 64 has distance 14, which is better than the best
known [64, 32] binary code of distance 12.
Similarly, QR48 has a binary image of distance 18, when the best
binary rate one half code of length 96 has distance 16.



Recent Example:

Example

Recently, Kiermaier and Wassermann have computed the Lee
weight enumerator of the Type II Z4-code QR80
and its minimum Lee weight dL = 26.
Hence its binary image has distance 26, which is better than the
best known [160, 80] binary code of distance 24.



Constructions techniques for linear CIS codes

It is easy to see that any linear code with generator matrix (I ,A) is
CIS if A is nonsingular.
Conversely any CIS code can be cast into that form.
If A is circulant with attached polynomial f ∈ F2[x ] then A is
nonsingular iff GCD(f , xn − 1) = 1.
If A is the adjacency matrix of a Strongly Regular Graph or a
Doubly regular Tournament then it satisfies a quadratic equation
that allows to give sufficient conditions for regularity.



Combinatorial matrices:

Let A be an integral matrix with 0, 1 valued entries. We shall say
that A is the adjacency matrix of a strongly regular graph (SRG)
of parameters (n, κ, λ, µ) if A is symmetric, of order n, verifies
AJ = JA = κJ and satisfies

A2 = κI + λA + µ(J − I − A)

Alternatively we shall say that A is the adjacency matrix of a
doubly regular tournament (DRT) of parameters (n, κ, λ, µ) if A
is skew-symmetric, of order n, verifies AJ = JA = κJ and satisfies

A2 = λA + µ(J − I − A)

where I , J are the identity and all-one matrices of order n. DRT
are related to skew Hadamard matrices via bordering.



And their codes

In the next result we identify A with its reduction mod 2.

Proposition

Let C be the linear binary code of length 2n spanned by the rows
of (I ,M). With the above notation, C is CIS if A is the adjacency
matrix of a

I SRG of odd order with κ, λ both even and µ odd and if
M = A + I

I DRT of odd order with κ, µ odd and λ even and if M = A

I SRG of odd order with κ even and λ, µ both odd and if
M = A + J

I DRT of odd order with κ even and λ, µ both odd and if
M = A + J



Quadratic Double Circulant codes

Let q be an odd prime power. Let Q be the q by q matrix with
zero diagonal and qij = 1 if j − i is a square in GF (q) and zero
otherwise.

Corollary

If q = 8j + 5 then the span of (I ,Q + I ) is CIS.
If q = 8j + 3 then the span of (I ,Q) is CIS.

It is well-known that q = 4k + 1 then Q is the adjacency matrix of
a SRG with parameters (q, q−12 , q−54 , q−14 ).
If q = 4k + 3 then Q is the adjacency matrix of a DRT with
parameters (q, q−12 , q−34 , q+1

4 ).
The result follows by the above Proposition.
The codes obtained in that way are Quadratic Double Circulant
codes



Cyclic codes

Denote by Ci the code C shortened at coordinate i
and by C the extension of C by an overall parity check.

Proposition

Let C be a cyclic binary code of odd length N, and dimension
N+1
2 . If its generator matrix is in circulant form, both C1 and CN

are CIS with the systematic partition. If, furthermore, the weight
of the generator polynomial is odd, then C is CIS with the
systematic partition.

Recall that in a cyclic code of dimension k , consecutive k indices
form an information set.
The result follows then for C1 and CN . In the extended case, the
generator matrix of C is obtained from that of C by juxtaposing to
the right, say, a column of 1’s.
It consists then of two juxtaposed triangular, non singular matrices.



Rank conditions for Counter Examples:

Proposition

If a [2n, n] code C has generator matrix (I ,A) with rk(A) < n/2
then C is not CIS .

Two different information sets must have more than n/2 elements
on the left.
Therefore they must intersect non trivially.
We generalize this observation in the next result.



Rank criterion for linear codes

Theorem
Let Σ denote the set of columns of the generator matrix of a
[2n, n] linear code C .
C is CIS iff ∀B ⊆ Σ, rk(B) ≥ |B|/2.

The proof uses matroid theory and Edmonds’ matroid base
packing theorem: A matroid on a set S contain k disjoint bases iff

∀U ⊆ S , k(rk(S)− rk(U)) ≤ |S \ U|.

Apply to the matroid of the columns of the generator matrix under
linear dependence, with

S = Σ, k = 2, rk(Σ) = n, |Σ| = 2n.



Dual distance conditions for Counterexamples:

Proposition

If C is a [2n, n] code whose dual has minimum weight 1 then C is
not CIS.

If the dual of C has minimum weight 1 then the code C has a zero
column and therefore cannot be CIS.

The previous proposition permits to show it is possible for an
optimal code not to be CIS.



Record breakers

We have looked at CIS codes for 2n ≤ 130 by using tables of best
linear codes (www.codetables.de)
and best self dual codes (Cf. Gaborit Homepage).
The Magma package BKLC (GF (2), 2n, n)) provides a code
corresponding to the entry in Grassl table.

I The best CIS codes we found are either optimal or best known

I The first length where a non SD optimal CIS code appears is
6: an optimal [6, 3, 3]

I The first length where a non FSD optimal CIS code appears is
20 an optimal [20, 10, 6]

I The first length where a non CIS BKLC appears is 34 where
the [34, 17, 8] has dual distance 1.



Classification

Let n ≥ 2 be an integer and gn denote the cardinal of GL(n, 2) the
general linear group of dimension n over GF (2). It is well-known
that

gn =
n−1∏
j=0

(2n − 2j).

Proposition

The number en of equivalence classes of CIS codes of dimension
n ≥ 2 is at most gn/n!.

The numbers gn/n! grow very fast: 3, 28, 849, 83328. They count
the number of bases of Fn

2 over F2.
It is easy to see that e1 = 1 and e2 = 2.



Building up Construction I

Proposition (Building up construction)

Suppose that C is a [2n, n] CIS code C with generator matrix
(In|A), where A has n rows r1, . . . , rn. Then for any two vectors
x = (x1, · · · , xn) and y = (y1, · · · , yn)T the following matrix G1

generates a [2(n + 1), n + 1] CIS code C1

G1 =


1 0 0 · · · 0 z1 x

0 1 0 · · · 0 y1 r1
0 0 1 · · · 0 y2 r2
...

...
...

...
0 0 0 · · · 1 yn rn

 , (1)

where ci ’s satisfy x =
∑n

i=1 ci ri and z1 = 1 +
∑n

i=1 ciyi .



Building up Construction II

Let us consider a [6, 3, 3] CIS code C whose generator matrix is
given below.

G =

 1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 1

 .

In order to apply building up construction, we take for example
x = (1, 1, 1) and y = (1, 1, 1)T . Then c1 = c2 = 0, c3 = 1. Hence
z = 0. In fact, we get the extended Hamming [8, 4, 4] code whose
generator matrix is given below.

G1 =


1 0 0 0 0 1 1 1

0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 1

 .



Building up Construction III

The converse is true.

Proposition

Any [2n, n] CIS code C is equivalent to a [2n, n] CIS code with the
systematic partition which is constructed from a [2(n − 1), n − 1]
CIS code by using the preceding Proposition.



Classification results

The number of CIS codes grows faster than the number of self
dual or formally self dual codes.

Table : Classification of all CIS codes of lengths up to 12 in the order of
sd, non-sd fsd, and none of them

2n d = 2 d = 3 d = 4 Total #

2 1 (1+0+0) 1
4 2 (1+1+0) 2
6 5 (1+2+2) 1 (0+1+0) 6
8 22 (1+9+12) 4 (0+2+2) 1 (1+0+0) 27
10 156 (2+40+114) 35 (0+9+26) 4 (0+2+2) 195
12 2099 (2+318+1779) 565 (0+87+478) 41 (1+7+33) 2705



Asymptotics

Let δ denote the relative minimum distance of a family of codes.
Good self dual codes exist, and counting shows that they are above
Varshamov-Gilbert bound that is

δ ≥ H−1(1/2) ≈ 0.11.

The same result can be shown directly for CIS codes without using
the fact that self dual codes are a subclass.
Quebbeman has shown by using AG codes over large alphabets and
projections over TOB bases that there are self dual codes
constructible in polynomial time and with δ ≈ 0.02.



Open problems

I Classify CIS codes over other fields and rings

I Can known families of permutation polynomials help?

I QC codes of rate 1/2 When are they CIS?

I Find good rate 1/2 free Z4−codes in the range 48−−80

I Are there good long codes of rate 1/2 that are NOT CIS?

I AG constructions of CIS codes better than AG constructions
of SD codes



Conclusion

We have introduced CIS codes a very basic generalization of self
dual codes, but still warranting further exploration.
Invariant theory cannot be applied but a mass formula might be
possible.
Boolean masking might be the first honest engineering application
of self dual codes.


